Skip to content
On this page

1345. Jump Game IV share

Problem Statement

Given an array of integers arr, you are initially positioned at the first index of the array.

In one step you can jump from index i to index:

  • i + 1 where: i + 1 < arr.length.
  • i - 1 where: i - 1 >= 0.
  • j where: arr[i] == arr[j] and i != j.

Return the minimum number of steps to reach the last index of the array.

Notice that you can not jump outside of the array at any time.

 

Example 1:

Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --&gt; 4 --&gt; 3 --&gt; 9. Note that index 9 is the last index of the array.

Example 2:

Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.

Example 3:

Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.

 

Constraints:

  • 1 <= arr.length <= 5 * 104
  • -108 <= arr[i] <= 108
Click to open Hints
  • Build a graph of n nodes where nodes are the indices of the array and edges for node i are nodes i+1, i-1, j where arr[i] == arr[j].
  • Start bfs from node 0 and keep distance. The answer is the distance when you reach node n-1.

Solution:

rs
use std::collections::{HashMap, VecDeque};

impl Solution {
    pub fn min_jumps(arr: Vec<i32>) -> i32 {
        let mut map = HashMap::new();

        for (i, &v) in arr.iter().enumerate() {
            map.entry(v).or_insert(vec![]).push(i);
        }

        let mut q = VecDeque::new();
        q.push_back((0, 0_i32));

        let mut visited = vec![false; arr.len()];
        visited[0] = true;

        while let Some((i, mut step)) = q.pop_front() {
            if i == arr.len() - 1 {
                return step;
            }

            step += 1;

            if let Some(v) = map.remove(&arr[i]) {
                for j in v {
                    if !visited[j] {
                        visited[j] = true;
                        q.push_back((j, step));
                    }
                }
            }

            if i + 1 < arr.len() && !visited[i + 1] {
                visited[i + 1] = true;
                q.push_back((i + 1, step));
            }

            if i >= 1 && !visited[i - 1] {
                visited[i - 1] = true;
                q.push_back((i - 1, step));
            }
        }

        -1
    }
}

...


Released under the MIT License.